Human Factors in Healthcare Safety

Andrea L. Cooks, HFE, MS Human Factors Consultant

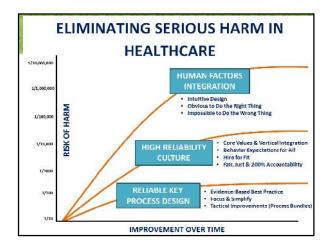
Mary Jo Giaccone, MSN, RN, CPPS Director Patient Safety, Regulatory, & Accreditation

Nursing Grand Rounds March 14, 2018

Agenda

- What is Human Factors (HF)?
- Why is HF Important in Healthcare and Safety?
- Practical Examples
- How Cincinnati Children's Integrated HF

Learning Outcomes


- Discuss the benefits of human factors in healthcare
- Discuss how human factors can be used to impact safety challenges in healthcare

A Call from the Institute of Medicine

- In 1999, IOM released report *To Err is Human:* Building a Safer Health System released in 1999
- Highlighted serious errors that occur daily in hospitals
- Catalyst for including Human Factors in healthcare
- Led to many human factors engineering design efforts to reduce:
 - Error rates in hospitals
 - Consequences of errors

Common Thinking and Pitfalls

- Errors are personal failings
 - When something bad happens, someone must be at fault
 - If we try harder we won't have the error
- Policies create safety
- And recently... Technology will save us!

What is Human Factors?

 Human factors is the <u>systematic application</u> of relevant information about those HUMAN capabilities, limitations, characteristics, behavior, and motivation to the design of THINGS (PRODUCTS), PROCEDURES (PROCESSES) people use and the ENVIRONMENT (PLACES) in which they use them.

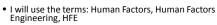
- Discovers and applies information about human behavior, abilities, limitations, and other characteristics to...
- ... the design of tools, machines, systems, tasks, jobs, and environments...
- ... for productive, safe, comfortable, and effective human use

~Sanders and McCormick (1993)

Practice

- Designing the fit between people and:

 - Equipment Places/Facilities

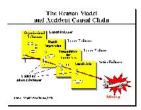


Human Factors is also known as...

- Human factors engineering (HFE)
- Human factors psychology
- Human engineering
- Engineering psychology
- Cognitive engineering
- Usability Engineering
- Ergonomics

Children's

What Human Factors IS NOT...


- Not just applying checklists and guidelines – Although helpful in many circumstances for standardization, etc.
- Not designing for oneself (how you believe it should be Although I'm sure we all have great ideas.
- Not just common sense or aesthetics – Although there is nothing wrong with doing a sanity check and making something "look nice"

Why Should We Care About Human Factors?

- Dr. James Reason says:
 - Fallibility is part of the human condition
 - $\bullet\,$ We can't change the human condition
 - We can change the conditions under which people work

Human Factors Topics of Study

- Usability
- Mental workload
- Situation awareness
- Human-automation interaction
- Alerts
- Lifting
- Training
- Teamwork and team training
- Information processing
- Naturalistic decision making
- Handoffs
- Interruptions/distractions
- Violations
- Human error
- Safety

What Are the Objectives?

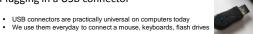
- **Reduce** errors, fatigue, stress and injuries at work, while at the same time...
- Improve productivity, ease of use, safety, comfort, acceptance, job satisfaction, and quality of life

Or simply – improve safety, quality, efficiency, and productivity all at the same time!

Who Requires HFE in their Designs?

- US Federal Aviation Administration
- Department of Defense
- Department of Transportation
- Nuclear Regulatory Commission
- Department of Energy
- National Aviation and Space Administration
- FDA Medical Device Testing

Human Factors in Healthcare


- Usability of Products/Technology
 - Design of medical devices and Health IT
- Human Error
 - Understanding the nature of human error (Swiss Cheese Model)
- Clinician Performance
 - Physical and cognitive obstacles
 - Social/behavioral performance
- System Resilience
 - Ability to adapt

Example #1 - Designs in Everyday Life

Plugging in a USB connector

- When trying to plug the USB connector in, I frequently turn it the wrong way and I am not alone.
 Challenging to tell just by looking which way it plugs in

Small problem, big impact:
 There are more than a billion of these connectors in use today.
 Even if a billion people make this mistake only once and only lose a second correcting the mistake, the lost time adds up to 31 years.

Solution:
 If the connector could be inserted either way and work, this problem would be solved. (i.e., MiniUSB)

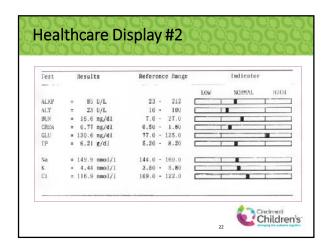
Children's

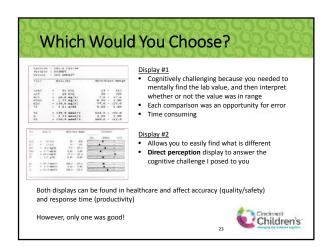
Example #2 – Designs in Everyday Life Designing for Affordance

Audience Participation....

Raise your hand (virtually) when you know HOW MANY of the lab results are out of range!!

Ready....?




				A COL	No.	
Species						
Patient	F175 F					
Client	: 1	SUE B				
Test		Resul	ts	Refere	ne	e Range
ALKP	-	85	U/L	23	-	212
ALT	=	23	U/L	10	-	100
BUN	=	16.6	mg/d1	7.0	-	27.0
CREA	=	0.77	mg/dl	0.50	-	1.80
GLU	=	130.6	mg/d1	77.0	-	125.0
TP	=	6.21	g/di	5.20	-	8.20
Na	-	149.9	mmol/1	144.0	-	160.0
K	-	4.44	mmol/1	3.50	-	5.80
Cl			mmol/1	109.0		

Okay, try again.

Raise your hand (virtually)
when you know HOW
MANY results are out of
range

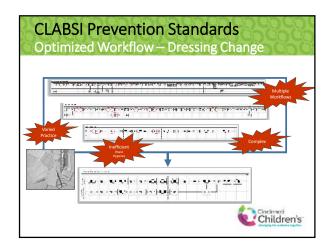
Ready.....?

What Does Human Factors Focus on to Meet Objectives?

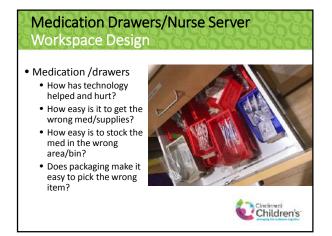
- **Identification** of performance: what are people actually doing?
- **Analysis** of the <u>interaction</u> between human performance and work systems
- Design of work systems to support/extend performance & eliminate/reduce performance obstacles

Human Factors Tools and Methods

- Failure Mode Effects Analysis (FMEA)
- Root Cause Analysis (RCA)
- Usability testing
- Work system analysis
- Energy expenditure
- Lifting and movement limits
- Technology design & implementation guidelines
- Mental model mapping
- Cognitive task analysis
- Visual, auditory, and tactile guidelines
- Alarm/ Warning guidelines
- Work process guidelines
- Software design
- Workstation guidelines



Human Factors at Cincinnati Children's



- 2 years in...and still learning!
- Top down/bottom up approach
- Integrated team member
- Brought in at the beginning

CLARGI Cree Scandard DOW Clarked Care Building DNE-Thilusch Pungs Pedroskian Selety PECAs	
Integrating HP	in CCHMC
ED/Dacherge BOTTO	Lib Draw Facilities Facilities Radioogn/MRI MUP Distall Engineering
PsychologiPostvires 80110	Cincinnati

Safe Patient Handling (SPH) Equipment Usability, Teamwork

- Understanding challenges and barriers with current SPH equipment
- Design challenges with current equipment (room size, layout)
- Behavior/culture aspects with handling patients
 - Do what we've always done
 - Pressures to do things quickly
 - Caregiver/Patient's First

Critical Care Building Workspace Design Cincinned Cincinned Children's Children's

162626262626262626262626262626262626262	
What Can You Do?	
	Cincinnati Children's

Use "HFE Thinking"

- Systems (e.g., machines or hospitals) need to be designed for people, and to work with people
- Systems must be designed to accommodate the range of users
- How systems are designed will influence human behavior and therefore system performance

- Design needs to be evidence-based, not "common sense" or designer driven
- All design must take into account the system of use

Sanders MM, McCormick EJ. Human Factors in Engineering & Design, $7^{\rm th}$ ed. McGraw-Hill; New York: 1993.

Something to Ponder...

• What is more controllable, People or Systems?

> We can't solve these problems by just FIXing people, we have to FIX the systems we interact with!

Thank You!

Acknowledgements: Thank you to A. Joy Rivera, Ph.D., Sr. Human Factors Systems Engineer at Children's Hospital of Wisconsin for providing material for this presentation.

